Invariant Differential Operators and Representations with Spherical Orbits

نویسنده

  • Ivan V. ARZHANTSEV
چکیده

It is known that the algebra D(V ) of G-invariant differential operators corresponding to a G-module V of a complex reductive group G is commutative if and only if V is a spherical G-module. In the present work we study the structure of D(V ) for G-modules with spherical orbits. It is proved that the centralizer Z(V ) of the subalgebra k[V ] in D(V ) is commutative. Also a characterization of actions with spherical orbits in terms of the reduced action is obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Space of Bounded Spherical Functions on the Free Two Step Nilpotent Lie Group

Let N be a connected and simply connected 2-step nilpotent Lie group and K be a compact subgroup of Aut(N). We say that (K,N) is a Gelfand pair when the set of integrable K-invariant functions on N forms an abelian algebra under convolution. In this paper, we construct a one-to-one correspondence between the set ∆(K, N) of bounded spherical functions for such a Gelfand pair and a set A(K, N) of...

متن کامل

Representations with Scalar K-types and Applications

We discuss some results of Shimura on invariant differential operators and extend a folklore theorem about spherical representations to representations with scalar K-types. We then apply the result to obtain non-trivial isomorphisms of certain representations arising from local theta correspondence, many of which are unipotent in the sense of Vogan.

متن کامل

Paley-wiener Theorem for Line Bundles over Compact Symmetric Spaces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

Invariant Differential Operators for Quantum Symmetric Spaces, II

The two papers in this series analyze quantum invariant differential operators for quantum symmetric spaces in the maximally split case. In this paper, we complete the proof of a quantum version of Harish-Chandra’s theorem: There is a Harish-Chandra map which induces an isomorphism between the ring of quantum invariant differential operators and a ring of Laurent polynomial invariants with resp...

متن کامل

A Remark on Rational Cherednik Algebras and Differential Operators on the Cyclic Quiver

We show that the spherical subalgebra Uk,c of the rational Cherednik algebra associated to Sn o C`, the wreath product of the symmetric group and the cyclic group of order `, is isomorphic to a quotient of the ring of invariant differential operators on a space of representations of the cyclic quiver of size `. This confirms a version of [EG, Conjecture 11.22] in the case of cyclic groups. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003